Intranasal immunization with synthetic peptides corresponding to the E6 and E7 oncoproteins of human papillomavirus type 16 induces systemic and mucosal cellular immune responses and tumor protection

Pallavi R. Manuri a, Bharti Nehete b, Pramod N. Nehete b, Rose Reisenauer a, Seth Wardell a, Amy N. Courtney a, Ratish Gambhir a, Dakshyani Lomada c, Ashok K. Chopra d, K. Jagannadha Sastry a, b, *

a Department of Immunology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, United States
b Department of Veterinary Sciences, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, United States
c Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, United States
d Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555, United States

Received 22 June 2006; received in revised form 20 December 2006; accepted 4 January 2007

Abstract

The E6 and E7 oncoproteins of the high-risk HPV type 16 represent ideal targets for HPV vaccine development, they being consistently expressed in cervical cancer lesions. Since HPV-16 is primarily transmitted through genital mucosal route, mucosal immune responses constitute an essential feature for vaccination strategies against HPV-associated lesions. We present here evidence showing that mucosal immunization of mice by the intranasal route with a mixture of peptides E744–62 and E643–57 from the E7 and E6 oncoproteins of HPV-16, respectively, using a mutant cholera toxin adjuvant (CT-2*), primed strong antigen-specific cellular immune responses in systemic and mucosal tissues. Significant levels of IFN-γ production by both CD4 and CD8 cells were observed along with CTL responses that were effective against both peptide-pulsed targets as well as syngeneic tumor cells (TC-1) expressing the cognate E6 and E7 proteins. Furthermore, mice immunized with the peptide mixture and CT-2* effectively resisted TC-1 tumor challenge. These results together with our earlier observations that T cell responses to these peptides correlate with recurrence-free survival in women after ablative treatment for HPV-associated cervical intraepithelial neoplasia, support the potential of these E6 and E7 peptides for inclusion in vaccine formulations.

Keywords: HPV16 E7 and E6 peptides; Mucosal immunization; Mutant cholera toxin

1. Introduction

Papillomaviruses are small DNA viruses that infect vertebrate hosts, including humans and cause the formation of hyperproliferative epithelial lesions [1]. The Oncogenic high-risk types of human papillomaviruses (HPV) such as HPV-16 are the main causative factors in the pathogenesis of cervical carcinomas [2]. Several strategies for HPV16 vaccines have been developed and evaluated in animal models. These included the use of recombinant E7 protein [3], DNA vaccine encoding E7 [4], and bacterial/viral vectors expressing E7 or E7 epitopes [5–7] as well as CTL epitope peptides of E7 [8]. All of these strategies represent parenteral routes of immunization, but HPV is a sexually transmitted mucosal pathogen and, therefore, mucosal vaccination may be necessary for protection. Both the oral and intranasal routes constitute attractive strategies for priming systemic as well as mucosal immunity against HPV.
Delivery of virus like particles (VLPs), corresponding to HPV16 and 18, by the oral route was shown to be effective in generating antigen-specific immune responses in mice and these could be significantly enhanced by the use of mucosal adjuvants like, LT192G, the non-toxic mutant form of Escherichia coli heat-labile enterotoxin (LT), or GpG-containing oligodeoxynucleotides [9]. However, intranasal immunization has emerged as the optimal vaccination strategy in rodents for induction of antibody responses in genital tissues [10–12] and was also shown to be effective in human studies [11,13,14]. Intranasal immunization of mice with HPV16 L1 protein or the HPV16 L1 gene in combination with the adjuvant choler toxin was shown to elicit systemic and mucosal humoral and cellular immune responses [15]. Recently, it was reported that intranasal immunization of mice with live lactococci expressing the E7 antigen and IL-12 induced systemic and mucosal immune responses and also protected mice against challenge with an E7-expressing murine tumor cell line TC-1 [16].

Vaccines based on peptide antigens have been proposed and pursued by several groups for a variety of pathogens because the advantages related to safety and ease of production, but their weak immunogenic properties must be overcome through the use of adjuvants, fusion proteins, or anchor-modified peptide epitopes. The adjuvant properties of cholera toxin (CT), an enterotoxin produced by Vibrio cholerae have been described extensively [17,18]. Since the native CT is unsuitable for human use because of its toxic effects, many mutants lacking toxicity but retaining their adjuvanticity have been developed and characterized [19,20]. The mucosal adjuvanticity of CT-2*, a choler toxin mutant derived by introducing two-codon substitutions (Arg7-Lys and Glu112-Gln) into the CT-A subunit [21] was reported earlier [22] where intranasal (i.n.) administration of a CTL epitope peptide from HIV-1 with CT-2* generated strong mucosal and systemic immune responses. Here, we obtained data demonstrating that i.n. administration of a combination of HPV-16 E744–62 and E643–57 peptides along with CT-2* as the adjuvant induced antigen-specific cellular immune responses at various mucosal and systemic compartments and protected mice against challenge with TC-1 tumor cells expressing the E6 and E7 oncoproteins of HPV-16.

2. Materials and methods

2.1. Animals

Female C57BL/6 mice of 6–8 weeks age were purchased from NCI. All the procedures for handling the animals were carried out in accordance with institutionally approved protocols. The animals were housed in microisolator cages and provided with sterile food and water. The animal facility is fully accredited by the Association for Assessment and Accreditation of Laboratory Animals Care International. The studies were conducted according to National Institute of Health Guidelines on the care and use of Laboratory Animals.

2.2. Cell lines and cell cultures

The cell lines EL-4 (C57BL/6, H-2b, Thymoma) and YAC-1 were maintained in RPMI complete media (CM) supplemented with 10% heat-inactivated FBS, 50 U/ml of penicillin–streptomycin and 50 μg/ml gentamycin. The TC-1 tumor cells are primary lung epithelial cells of C57BL/6 mice origin that were transfected to express the E6 and E7 oncoproteins of HPV-16 as described earlier [23] and were a kind gift from Dr. T.-C. Wu, Johns Hopkins Medical Institution, Baltimore, MD. The TC-1 cells were grown in complete RPMI supplemented with 400 μg/ml G418.

The EG7-Ova cells were EL-4 thymoma cells transfected with chicken ovalbumin [24] and were a kind gift from Dr. Chen, Dept. of Immunology, UTMD Anderson Cancer Center. They were maintained in DMEM supplemented with 10% heat-inactivated FBS, 2 mM glutamine, 100 U/ml penicillin, 100 μg streptomycin and 400 μg/ml G418.

2.3. Peptides

The E744–62 peptide, Q19D (QAEPDRAHVYNIVTCFCKCD) and the E643–57 peptide, Q15L (QLLRREVYDLC) that represent murine H2*-restricted CTL epitopes, were used in the CTL assays. All the peptides were prepared in the institutional antigen-core facility utilizing FMOC solid phase chemistry on a PTI Symphony Peptide Synthesizer (Protein Technologies Inc., Tucson, Arizona). Peptide purity was determined to be >95% by high-pressure liquid chromatography (HPLC) and was validated by mass spectrometry.

2.4. Mutant cholera toxin (CT-2*)

The CT-2* protein, a mutant form of the cholera toxin, produced by a vaccine strain of V. cholerae, was purified to homogeneity by sodium hexametaphosphate precipitation, affinity purification on a galactose column and Sephadex G75 gel filtration chromatography as described earlier [25–28]. The purified toxin was dissolved in pyrogen-free water, and the lipopolysaccharide (LPS) contamination was determined by the Limulus amebocyte lysate assay (QLC-1000kit, BioWhitaker, Walkerville, MD). The amount of LPS detected in 1 μg of CT-2* (amount used as adjuvant in mice) was 0.5 pg, which did not stimulate production of any cytokine in the mouse ligated ileal loops [25–28].

2.5. Immunizations

Mice (n = 5) were immunized by the intranasal route twice at 5-day intervals with a mixture of the Q19D and
Q15L peptides (100 μg of each/mouse) along with CT-2* (1 μg/mouse). The mice were anesthetized by the intraperitoneal injection of ketamine–xylazine mixture and were immunized by introducing a small volume (10–15 μl) consisting of the peptide mixture and the CT-2* adjuvant in PBS into each nostril. Five days after the last immunization, mice were sacrificed and cell suspensions were prepared from the spleen, cervical lymph nodes (CLN), mesentric lymph nodes (MLN), Peyer’s patches (PP), and the vaginal-associated lymphoid tissue (VALT) by homogenization or enzymatic dissociation using collagenase type IV (Sigma).

2.6. CTL assay

The CTL assay was carried out as described previously [29]. Briefly, cells isolated from different tissues were restimulated for 5 days with the cognate peptide mixture used for immunizing the mice. The cytolytic activity of the restimulated cells was assayed against syngeneic 51Cr-labeled EL-4 cells that were incubated with either medium or the individual cognate peptides. Additional targets included the 51Cr-labeled TC-1 cells expressing the E6 and E7 oncoproteins of HPV-16. Unlabeled Yac-1 cells were mixed with the labeled TC-1 cells to eliminate contribution from the NK cell lysis for calculating the antigen-specific CTL activity. The percentage (%) of specific lysis was calculated using the following formula: % specific lysis = (experimental release – spontaneous release)/(maximum release-spontaneous release) × 100, where the spontaneous release represents the radioactivity obtained when the target cells were incubated in culture medium without effectors and maximum release represents the radioactivity obtained when the target cells were lysed with 1% Triton X-100.

2.7. Intracellular cytokine staining and flow cytometry analysis

Cells isolated from the various tissues were stimulated with the individual E6 and E7 peptides used for immunizing mice, and the percentages of CD4+ and CD8+ T cells producing IFN-γ were determined by the intracellular cytokine flow cytometry [30]. The peptides for stimulating the various cells were used at a concentration of 2 μg/ml for 4 h at 37 °C, with the Golgistop reagent (1 μl/ml, Pharmingen, San Diego, CA) added for an additional 8 h before harvesting the cells from the culture. Cells were then washed once with FACS buffer (PBS + 1% FBS + 0.1% sodium azide) and stained with the following fluorochrome-conjugated monoclonal rat anti-mouse antibodies (Pharmingen, San Diego, CA): CD3-APC, CD8-FITC and CD4-PerCP. Cells were then subjected to intracellular cytokine staining using the CytotkitCytoxperm kit according to the manufacturer’s instructions (Pharmingen) and PE-conjugated anti-IFN-γ antibody or the immunoglobulin isotype control antibody (rat IgG1), both purchased from Pharmingen. Sample acquisition was done on a FACSscalibur and analyzed using the Flowjo 6.4.2 software (Becton Dickinson, CA).

2.8. Measurement of IFN-γ production by ELISPOT assay

Cells isolated from spleen, CLN, and MLN of immunized mice were subjected to ELISPOT assay for antigen specific IFN-γ-producing cells as described earlier [22] using the kit from Pharmingen, San Diego, CA. The spots, representing individual IFN-γ-producing cell as spot forming cells (SFC), on the membrane were enumerated by Zellnet Consulting Inc., New York, NY using the KS-ELISPOT automatic system (Carl Zeisis Inc., Thornwood, NY). Responses were considered significant when they were above 50 SFC/well and at least double the number obtained in cells cultured with medium alone. A non-specific negative peptide was included as another control. Peptide specific and negative control responses were compared with the responses of medium and p-values ≤0.05 (*) were considered significant.

2.9. In vivo tumor protection experiments

Two groups of mice (n = 5) were immunized by the i.n. route twice at 5 days intervals with the mixture of the HPV-16 peptides E744–62 and E643–57 (100 μg each) along with the mutant cholera toxin, CT-2* (1 μg). Five days after the last immunization, one group of mice were injected in the right flank by the subcutaneous route with 2 × 105 TC-1 tumor cells, and the other group of mice that served as a negative control group, were injected with 5 × 106 EG7-Ova tumor cells. A separate group of naïve unvaccinated mice (n = 5) injected with the TC-1 tumor cells (2 × 105) served as another negative control group. Mice in all the groups were monitored twice a week for tumor growth, and the tumor size was measured using a caliper and was recorded as mean diameter: longest surface length (a) and width (b), and the tumor size calculated using the formula, (a + b)/2. Mice were euthanized when the tumor size reached 20 mm in mean diameter.

3. Results

3.1. Intranasal immunization with a combination of the E7 peptide Q19D and the E6 peptide Q15L of HPV-16 along with the mutant cholera toxin CT-2* adjuvant primes antigen-specific CTL that lyse syngeneic TC-1 tumor cells expressing the cognate proteins

A group of five C57BL/6 mice were intranasally immunized twice at 5-day intervals with a mixture of HPV-16 peptides Q19D and Q15L (E744–62 and E643–57, respectively) admixed with CT-2*, a two-codon mutant of cholera toxin, observed in our earlier studies to be effective as a mucosal adjuvant [22]. Analyses of cells from the spleens and draining cervical lymph nodes (CLN) showed strong CTL activity.
against target cells pulsed with either Q19D or Q15L peptides (Fig. 1). The specific lysis values obtained at an effector to target cell (E:T) ratio of 100:1 were 75% in spleen and 50% in CLN for Q19D peptide and 58% in spleen and 40% in CLN for Q15L peptide. These responses were found to be highly significant when compared to EL-4 targets (p ≤ 0.00005). These effectors also lysed EL-4 target cells pulsed with peptides R9F (E7^49–57) and V10C (E6^49–58) (p ≤ 0.05), the CTL epitopes within the Q19D and Q15L sequences, respectively. Furthermore, significant lysis of the TC-1 tumor cells that express the E7 and E6 oncoproteins of HPV-16 was also observed by the spleen and CLN cells from these immunized mice. The specific lysis values at an E:T ratio of 100:1 were 38% and 20% for the spleen and the CLN cells, respectively (Fig. 1). The values were compared to those obtained with EG7-Ova targets and were found to be highly significant (p ≤ 0.00005). No CTL activity was observed both in the spleen and CLN against either the Yac-1 cells (NK targets) or the EG7-Ova cells (syngeneic tumor cells expressing the non-specific ovalbumin antigen) used as targets (Fig. 1) indicating the antigen-specificity of the CTL responses induced.

3.2. Immunization with the mixture of the Q19D and Q15L peptides induces IFN-γ production by CD4+ and CD8+ T cells from the systemic and mucosal compartments

We also determined whether the mucosal immunization protocol adopted was effective in priming antigen-specific cellular immune responses in different mucosal and systemic compartments. For this, cells isolated from different tissues of mice immunized with the mixture of Q19D and Q15L peptides along with the CT-2* adjuvant were assayed for antigen-specific IFN-γ production by CD8+ and CD4+ T cells. As shown in Fig. 2A we observed significant percentages of CD8+ T cells producing IFN-γ in response to stimulation with the Q19D peptide in the spleen (7.88%), the draining cervical lymph nodes (4.58%), as well as multiple mucosal tissues like the MLN (6.26%), Peyer’s patches (9.41%), and the VALT (14.5%). Similar responses were observed in the cells from the various tissues in response to stimulation with the Q15L peptide (7.92% in spleen, 5.95% in CLN, 5.96% in MLN, 11.7% in PP, and 11.3% in VALT). We also observed strong IFN-γ production by CD4+ T cells in response to both Q19D and Q15L (Fig. 2B). No positive CD8 and CD4 responses were observed for all the tissues with the negative control peptide used for stimulation (Fig. 2A and B). Overall, the amounts of IFN-γ producing CD8+ T cells were comparable to that of CD4+ T cells in response to Q19D as well as Q15L peptides (Fig. 2C).

We also measured the number of antigen-specific IFN-γ producing cells generated by intranasal immunization with the HPV peptides and CT-2* on the day of sacrifice by ELISPOT assay. Fig. 3A depicts the number of IFN-γ producing cells observed in the spleens of mice immunized with CT-2* and the combination of HPV16 HPV16E7^44–62 and E6^43–57 peptides. The number of spot forming cells in the spleen was significantly higher for the peptides (Q19D and Q15L) when compared to those in the medium alone control (p ≤ 0.05). Similar analyses were performed using cells isolated from the CLN and MLN. As shown in Figure 3B positive peptide specific responses were significantly higher than the medium control (p ≤ 0.05) in mice immunized with CT-2* and the combination of HPV16 HPV16E7^44–62 and
E643–57 peptides. Responses to the negative peptide were not positive according to the criteria described in the methods section in spleen (Fig. 3A), CLN and MLN (Fig. 3B).

3.3. Protection against TC-1 tumor growth by intranasal immunization with the mixture of the Q19D and Q15L peptides

In order to determine the in vivo efficacy of the cellular immune responses induced after i.n. immunization of mice with the combination of the Q19D and Q15L peptides using the CT-2* adjuvant, we adopted a tumor-challenge model. The TC-1 cells are syngeneic to the C57BL/6 mice and express the E6 and E7 oncoproteins of HPV-16 [23]. A group of naïve mice injected with the TC-1 tumor cells served as unvaccinated controls (group 1). At seven days after the second i.n. immunization, mice were injected with either the EG7-Ova tumor cells that are syngeneic but express the irrelevant ovalbumin antigen (group 2) or the TC-1 tumor cells (group 3). Mice in all the three groups were monitored for tumor development over 15 days. As shown in Fig. 4A, 7 days after injection of TC-1 tumor cells mice in group 1 developed tumors with a mean size of 14.15 ± 1.15 mm. Similarly, mice in group 2 that received the EG7-Ova tumor cells, tumors started growing by day 7 and reached a mean size of 11.15 ± 0.36 mm. However, mice in group 3 immunized with the HPV peptides (Q19D and Q15L along with the CT-2* antigen) and injected with TC-1 tumors had no measurable tumors (p < 0.05 as compared with EG7-Ova group and naïve group). By day 15, naïve mice injected with the TC-1 tumor cells (group 1) as well as the mice injected with the EG7-Ova tumor cells (group 2) showed tumors measuring 17.0 ± 0.5 mm and 16.15 ± 0.23, respectively (Fig. 4A). On the other hand, mice in group 3 immunized with the HPV peptides and injected with TC-1 tumor cells did not develop any measurable tumors by day 15. Analyses of the data for the percentages of mice in each group that were free of tumor over a period of 60 days follow-up showed 15% of the naïve unimmunized mice challenged with TC-1 tumors (group 1) and 20% of immunized mice challenged with the EG7-Ova
Fig. 2. (Continued).

4. Discussion

Both the E7 and E6 oncoproteins of HPV are expressed in pre-neoplastic as well as cancerous lesions of the cervix and represent potential targets for prophylaxis and immunotherapy approaches. Most studies to date focused on the development of vaccines employing either the whole E7 or E6 proteins in separate formulations or individual immunogenic peptides corresponding to these proteins [30–33]. Peptide-based vaccines have gained much importance over the last
Fig. 3. Induction of peptide specific IFN-γ producing cells by intranasal immunization with the mixture of E744–62 (Q19D) and E643–57 (Q15L) peptides from HPV-16 using the mutant cholera toxin (CT-2*) adjuvant. Cells isolated from spleen, CLN and MLN of C57BL/6 mice immunized by the intranasal route with mixture of Q19D and Q15L peptides were stimulated in vitro using medium, cognate peptides or a non-specific negative control peptide individually (2 μg/ml) in a 96 well plate ELISPOT. After 48 h the plates were washed and developed and the number of IFN-γ producing spot forming cells were enumerated in each well and the number of spot forming cells calculated per 1 × 10^6 cells is plotted. Average values and errors bars were calculated from two separate experiments consisting of three mice in each. Responses were considered positive when they were above 50 SFC/well and at least double the number obtained in cells cultured with medium alone (this cut-off value shown as horizontal line in the two panels). The p-values were calculated comparing with the medium alone control and values ≤0.05 (*) are considered significant.

decade as they are relatively easy to construct and produce, chemically stable, and unlike the E6 and E7 proteins, lack oncogenic potential. Many investigators have developed powerful paradigms to choose peptides from the E6 and E7 oncoproteins of HPV-16 for immunization and established the pre-clinical evaluation to develop peptide-based tumor vaccines [8,34,35].

In a previous study [36], we demonstrated the immunogenic potential of the Q19D and Q15L peptides from the E7 and E6 oncoprotein of HPV-16 for immunization and established the pre-clinical evaluation to develop peptide-based tumor vaccines [8,34,35].

An E7-derived Th epitope, potentiated antigen specific CTL responses in mice [32]. The Q15L peptide from the E6 oncoprotein used in our study overlaps with a murine CTL epitope peptide (E648–57) presented by H-2Kb) reported by Peng et al. [37]. Results from the present investigation demonstrated that intranasal immunization with a mixture of the E7 and E6 peptides, Q19D and Q15L, using the mucosal adjuvant CT-2*, induced strong antigen-specific T cell responses that afforded protection against challenge with tumor cells expressing the E6 and E7 oncoproteins of HPV-16. Importantly, antigen-specific T cell responses, in terms of IFN-γ producing CD4+ and CD8+ T cells in response to the peptides used for immunization of mice were observed in the VALT. No positive peptide specific antibody responses (IgG and IgA) were observed in the serum, saliva and vaginal washes (data not shown) tested at different time points by
the immunization procedure followed (two doses at 5 days intervals). The significance of this data lies in the fact that
HPV is a sexually transmitted pathogen, and the development of an HPV vaccine/adjuvant formulation capable of
eliciting mucosal immune responses, including at the genital
mucosal surfaces, may be important for protection against
HPV-associated cervical lesions. Furthermore, in a previous
cross-sectional study we observed a significant association
of cellular immune responses specific to these E7 and E6
peptides, Q19D and Q15L, with recurrence-free survival of
women that underwent ablative treatment for HPV-associated
cervical intraepithelial neoplasia.

Even though literature reports described DNA vaccines
based on the E7 protein or the immunodominant CTL epi-
topes to be effective in generating HPV-specific systemic
immunity [30], prevalence of antigen specific T cell responses
at distant mucosal sites has not been investigated in detail.
Similarly, the efficacy of delivering the E7 protein along with
 CpG-oligodeoxynucleotide (ODN), a strong immunomodu-
 latory agent [38–41], for priming systemic but not mucosal
immune responses was reported by Tae-Yoon et al. [31].
One recent report described intranasal immunizations with
an adeno-associated virus (AAV2) vector construct expressing
the codon-optimized major capsid gene L1 (L1H) from
HPV-16 to induce long-lasting humoral and cellular immune
responses [42]. In our study, we show for the first time that
co-delivery of peptides from the E7 and E6 proteins of HPV-
16 along with the non-toxic mucosal adjuvant CT-2* by
the intranasal route elicited strong systemic and mucosal cellular
immune responses along with anti-tumor efficacy. We believe
that an ideal vaccine for the prophylaxis and therapy of HPV-
associated cancers should prime strong immunity at multiple
mucosal sites and exhibit protective efficacy, and results from
the present investigation provide strong support for the util-
ity of these E6 and E7 peptides and the intranasal delivery
strategy for potential clinical testing.

Acknowledgements

All the culture media were produced by the central media
lab, and all the synthetic peptides were prepared in the Syn-
thetic Antigen Core Facility, both supported by funds from
NIH grant CA 16672.

Conflict of interest statement: None of the authors have a
commercial association that might pose conflict of interest.

Funding: Studies in this manuscript are supported in part
by funds from the NCI grant CA077378, NIAID AI42694,
institutional grant MRP from M.D. Anderson Cancer Center.

References

110.

[3] Fernando GI, Murray B, Zhou J, Frazer IH. Expression, purification,
and immunological characterization of the transforming protein E7,

cer immunotherapy using a DNA vaccine encoding the translocation
domain of a bacterial toxin linked to a tumor antigen. Cancer Res
2001;61(9):3698–703.

al. Immunisation of mice using Salmonella typhimurium expressing
human papillomavirus type 16 E7 epitopes inserted into hepatitis B

[6] Liu DW, Tsao YP, Kung JT, Ding YA, Sytwu HK, Xiao X, et al. Recom-
binant adeno-associated virus expressing human papillomavirus type
16 E7 peptide DNA fused with heat shock protein DNA as a potential

cer immunotherapy using Sindbis virus replicon particles encoding a

[8] Feltkamp M, Smits HL, Vierboom MP, Minnaar RP, De Jongh BM,
Drijfhout JW, et al. Vaccination with cytotoxic T lymphocyte epitope-
containing peptide protects against tumor induced by human papillo-

al. Human papillomavirus virus-like particles are efficient oral immu-
nogens when coadministered with Escherichia coli heat-labile enterotoxin

toxin adjuvant on IgE antibody response to orally or nasally adminis-

Hofmjen J. Antibodies and antibody-secreting cells in the female gen-
ital tract after vaginal or intranasal immunization with cholina tox in B

Potts A, Hartman F, et al. Nasal vaccination with attenuated Salmonella
typhimurium strains expressing the Hepatitis B nucleocapsid: dose

Michalek SM, Salivary, nasal, genital, and systemic antibody responses in
monkeys immunized intranasally with a bacterial protein antigen and the

Intranasal vaccination of humans with recombinant cholera tox in B
subunit induces systemic and local antibody responses in the upper

immunization with human papillomavirus type 16 (HPV-16) virus-like
particles or with the HPV-16 L1 gene elicits specific cytotoxic T lymph-

[16] Bermudez-Humaran LG, Cortez-Perez NG, Lefevre F, Guimaraes V,
on live Lactococci expressing E7 antigen and IL-12 induces systemic
and mucosal immune responses and protects mice against human papil-

cytotoxic lymphocyte responses induced by enterotoxin-based mucosal

Mucosal delivery of a respiratory syncytial virus CTL peptide with
enterotoxin-based adjuvants elicits protective, immunopathogenic,
and immunoregulatory antiviral CD8+ T cell response. J Immunol

al. Mutants of cholera toxin as an effective and safe adjuvant for nasal

